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SUMMARY

The paper presents a new implicit pressure–implicit saturation higher-order accurate in space and
second-order accurate in time advection–dispersion scheme for the hyperbolic transport equations in
porous media with discrete three-dimensional representation of material interfaces. We develop adaptive
time di�erencing methods to use time steps greater than the mesh Courant number (Courant–Friedrich–
Levy condition, CFL). The paper pays special attention to hybrid discretization of subsurface geometry,
placing emphasis on the multiphase �ow in fractured petroleum reservoirs. We also introduce numerical
iso-parametric double mapping integration method for node-centred hybrid meshes and use it in our
transport scheme. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Much of the world’s remaining oil reserves are hosted by fractured reservoirs, such as the
Persian Gulf reservoirs [1]. Extraction of oil from such reservoirs can terminate abruptly
when injected water invades the fractures, trapping the oil inside. Laboratory experiments on
fractured rocks are di�cult and expensive to conduct and numerical models have become the
preferred tool for the investigation of transport phenomena in complex reservoirs [2–4].
Structured grids simply do not have the ability to capture curved features of fracture geom-

etry. Applications of the unstructured transport schemes in the subsurface include the control
volume method (CVM) [2], the control volume �nite element method (CVFEM) [3], the �nite
element method (FEM) [4], but most of the models are still restricted to 2D. The problem of
3D modelling of subsurface �ow is two-fold: �rstly, usage of an automatic 3D unstructured
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mesh generation is not yet established in the area, secondly, it requires robust high-order
non-oscillatory transport schemes with time steps larger than Courant number (CN) of the
grid. The present paper develops such methods.

2. METHODS

2.1. Governing equations

Nomenclature of symbols in equations is given in Table I.
Like Reference [4] we compute transient �uid pressure di�usion and immiscible displace-

ment of slightly compressible phases in a sequential manner. Firstly, an elliptic–parabolic
pressure equation is solved to obtain a total velocity of �uid phases, vt , via Darcy’s law,
taking into account buoyancy contributions due to �uid density, �:

vt = − �t[∇p+ g�]= − �t∇pr (1)

Reduced pressure is de�ned as pr =p−�0g. The gradient of pr is derived from pr-saturation
relationships, varying among rock types. The conservation of total �uid volume in slightly
compressible �ow requires

∇ · vt − q̇=0 (2)

By substituting Darcy’s law for vt we obtain

−∇ · �t∇p − q̇=0 (3)

The total mobility, �t , requires a knowledge of the permeability tensor K, relative
permeability multipliers for each phase, kri, and their viscosities �i, for non-wetting and wet-
ting phases. The calculation of kri relies on experimentally parameterized models like those
in Reference [5], and others, relating capillary pressure of phases to saturation. For transient
pressure di�usion Equation (3) becomes

�ct
@pr
@t
= − ∇ · (K�t∇pr) + q̇ (4)

Table I. Nomenclature of symbols, used in equations.

Symbol Meaning Symbol Meaning

vt Total velocity p Fluid pressure
�t Total mobility of �uid g Gravity acceleration
K Permeability tensor �r Average �uid density
kri Permeability multiplier �i Viscosity of phase i= n; w
fi Fractional �ow for phase i= n; w � Porosity of the rock
q̇ Volume source term  i Saturation phase i= n; w
Mi Interpolation function for CV i n Normal to the CV facet
M Vector of CV interpolation functions � Time stepping parameter
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where ct is the total system compressibility above the bubble point. The subscripts r in the
pressure equation (4), denote the reduced �uid pressure pr and the average �uid density �r
normalized by the reference density �0.
Secondly, re-arranging the transport equation �(@ i=@t) +∇ · [fivt] +∇ · [�ifi∇pc] + q̇i=0

we expand the capillary spreading into di�usion term and obtain

�
@ i

@t
= − vt · dfi

d i
∇ i − fi∇ · vt − ∇ ·

[
�ifi

dpc
d i

∇ i

]
+ qi i (5)

In this formulation we try to moderate strong hyperbolicity of the initial transport equation
by representing the divergence in the �ow �eld of the phase i by source term fi∇ · [vt dfi=d i]
and treating capillary spreading of the saturation �eld by a di�usion term.

2.2. Control volume hybrid �nite element discretization

We employ linear FEs to discretize the pressure equation (4) (similar to Reference [4]), using
a dual CV/FE mesh to achieve conservation of �uid volume. In the CVFEM approach [6] FEs
and CVs assume a complementary role in the spatio-temporal integration of �uid pressure,
and Darcian �uxes are based on the �uid pressure derivative. A CV discretization that places
cell boundary segments (referred to as facets) inside the FEs, where the FE interpolation
functions are continuous, is required to integrate the discontinuous velocity arising from the
di�erentiation of the piecewise linear pressure. Using node-centred CVs, the conservation
law (5) can be solved. The di�erence from the traditional CV schemes in reservoir simulation
(also multipoint �ux method of Reference [2]) is in application of iso-parametric numerical
integration on hybrid 3D CV/FE mesh together with a high-order TVD transport. For example,
Figure 1(b) shows a 3D hybrid model with fractures meshed by tetrahedral/prism elements,
and geometrically unconstrained regions meshed by hexahedra (mesh generated by the in-
house Delaunay tetrahedral and indirect hybrid meshing code MezGen [7]). For the CVFEM
models a hybrid mesh typically requires 25–30 per cent less memory than tetrahedral.
A subdivision of an FE into CV sectors is needed to determine �uxes across the facets.

We do not actually store the CV mesh, but accumulate CV stencils directly in a solution ma-
trix. Our approach applies to the models where CVs are composed of arbitrary combinations of
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Figure 1. (a) Cube advection test; (b) contours of saturation in fractured reservoir.
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3D FEs. The subdivision uses iso-parametric formulation, and we tabulate CV sectors in
parametric space of di�erent FE types. Each CV sector is a topological hexahedron and we
perform the Gaussian volume and surface integration in the second parametric space, relating
the mapped sector in the parametric space of an element to the unit cube [8]. Mesh deformation
is possible and it does not compromise the accuracy of the numerical CV integration. In our
formulation, all integration points and normals in CV sectors are pre-tabulated, improving the
computational e�ciency of integration during the run time.
It is important that the overall integral of a variable, discretized with node-centred piecewise

constant CVs, is not exactly the same as the integral of a variable, discretized with piecewise
linear FEs with the same nodes. Therefore, a transformation is required to map CV-discretized
variables to FE nodes in order to interface the FE with the CV computations in a consistent
manner. See Reference [9] for details.

2.3. Spatio-temporal integration: solution procedure

The pressure equation (4) is solved using a standard Bubnov–Galerkin FEM. Trilinear element
interpolation functions Ni are used to integrate �uid pressure in space and are equivalent to
the nodal weights Wi. The transient pressure is evolved using an implicit backward-Euler inte-
gration in time. The Darcian �uxes are based on the �uid pressure derivative (see Section 2.2)
and we solve the transport equation (5) using the node-centred CVM with CV Darcian �ux
recovery. CV discretization of (5) gives a series of volume and surface integrals over the
boundaries of each CV as well as volume integrals for distributed sources. CV integrals are
expressed in terms of the piecewise constant CV interpolation functions Mi. For each FE,
there are as many internal surfaces and integral contributions to CVs as there are connec-
tions between nodes. This set constitutes the CV stencil associated with the element, which
is accumulated into a global solution matrix A and right-hand vector b. For example, the CV
integrals for the �rst-order accurate upwind scheme, used as a �rst step in our high-order
method, are

�
∫
CV

Mi
@ � i

@t
dV +

∫
CVout

n · vt � c dS +
∫
CVin

n · vt � u dS −
∫
CV
Mq dV =0 (6)

Here in and out denote the in- and outgoing �uxes with regard to the CV cell i. The
subscripts u; c refer to the far-�eld upstream and current CVs.
Initially we apply the �rst-order scheme with an implicit integration in time, performing

an accumulation of integrated surface-normal �uxes into a solution matrix whose diagonal
contains the pore volume of the ith CV, divided by an arbitrarily large time increment.
Upwinding is achieved by discriminating incoming �uxes as o�-diagonal couplings, while
outgoing �uxes are decoupled through accumulation into the diagonal. A right-hand vector
b contains the products of the pore volume and the current saturation divided by the time
increment. The resulting sparse, positive de�nite, but asymmetric system of equations is solved
using the algebraic multigrid method (AMG). The �rst-order scheme is overly di�usive and
fails to preserve sharp saturation fronts as the transport equation (5) has a strongly hyperbolic
character. This motivates the development of higher-order accurate method.
The higher-order accurate simulation of the mass-conservative transport of a scalar property

(known as the Riemann problem) is a lively area of research and many robust schemes are
available (e.g., References [10, 11]). To make a scheme second-order accurate, one typically
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obtains an estimate of the gradient of the transported variable for each CV to �nd its values
on the CV cell boundaries. To suppress oscillations, it is common to use slope limiters that
guarantee the scheme becomes total variation diminishing (TVD, e.g. Reference [12]).
Temporal limiting, referred to as �-limiting, is introduced. Firstly, in the FE framework

we interpolate  ̂ to the surface integration points k on the CV boundaries. Secondly, gradient
estimates are assessed using the normalized variable approach, see Reference [9]. Thirdly, we
apply a second-order Crank–Nicholson-type scheme to integrate a solution in time. However,
for time steps greater than the mesh CN this approach can result in numerical oscillations. To
avoid this, we introduce a parameter �, set to 0.5 for Crank–Nicholson and 1.0 for backward
Euler schemes. The time di�erencing equation with the di�usive �uxes takes the form

∫
CV

(
� 
n+1
i − � 

n
i

�t
− �q

)
dV =

∫
CV
�(n · vt + Knn · ∇ ̂

n+1
) ̃

n+1
dS

+
∫
CV
(1−�)(n · vt + Knn · ∇ ̂

n
) ̃

n
dS (7)

For each time step and CV facet a value of � is calculated based on the satisfaction of
the TVD criteria. Since backward Euler time di�erencing is TVD, the �-corrected Crank–
Nicholson scheme is guaranteed to be TVD as � approaches 1. For the overall system of
algebraic equations, this applies with the proviso that the diagonal of the solution matrix
remains positive. This extra constraint can be taken into account when � is calculated. We
achieve this by measuring the temporal change in both upstream and downstream facet �uxes,
increasing � gradually from 0.5 to 1.0 as the local CFL limit is approached.
Finally, we apply the following �ux-limited high-order CV discretization of the transport

equation in the integral form:

�
∫
CV

Mi
@ � i

@t
dV +

∫
CV
n · vt  ̃ k dS −

∫
CV

Miq dV =0 (8)

where the �ux-limited high-order FE approximation  ̃ k , replaces the upwind �rst-order
approximation � u in (8) and the source q also includes �ow-�eld-related divergence terms.
Due to the �ux-limiting, Equation (8) is now non-linear, and needs to be transformed into a
linear system of equations. We achieve this by means of a Picard iteration.

3. RESULTS

The scheme has been implemented as an extension of the CVFEM code Radiant, developed
by Pain et al. [9]. Time stepping e�ciency is demonstrated by the advection test. Figure 1(a)
presents a constant velocity (shown as arrows) transport of the cubical pro�le on a hybrid
mesh, generated by the MezGen mesher [7]. Here we use time steps 10 times greater than
the mesh CN. The dispersion of the cubical pro�le is minimal as the scheme remains stable
and second-order accurate in space and time.
Figure 1(b) shows a 30×30×10 metre hybrid model of the fractured reservoir with 167 171

nodes and 713 071 elements, generated by the MezGen. Multiphase �ow is considered. Water
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is injected at the injection well, oil is extracted at the production well. The injection pressure
is 1 × 1014 Pa. The matrix permeability is 1 × 10−15 m−2, the porosity is 0.3, fractures have
a permeability of 1 × 10−12 m−2 and the porosity 0.9. We use Brooks–Corey [5] relative
permeability model for the matrix. Oil and water viscosity are equal. Iso-contours of oil
saturation 0.5 (initial oil saturation is 0.95) are shown after 35.7 days of water injection. A
high-order scheme is required to capture saturation fronts accurately on 3D fracture-matrix
interfaces. The small size of mesh elements dictates the usage of new implicit time stepping.
Figure 1(b) shows the water break through fractures and large amounts of oil trapped in
the matrix. The test in Figure 1(b) con�rms e�ciency of the proposed method in a realistic
reservoir simulation.

4. CONCLUSIONS

This paper contributes implicit pressure–implicit saturation high-order CVFEM method for
multiphase �uid �ow simulations on hybrid meshes with discrete volumetric fractures.
Generalization of a known CVFEM transport algorithm to hybrid meshes is provided.
Simultaneously, the method overcomes the CFL constraint on transport simulations with
implicit variable order time stepping. The method is successfully applied to the two-phase
transport equation (5) with gravitational and capillary terms on complex hybrid 3D meshes.
Preliminary results suggest that the scheme is very well suited for the simulation of a �uid

�ow in a fractured porous media, because: (1) the CFL condition no longer limits time-step
size; (2) the mass conservation equation is solved directly using the CVM; (3) propagating
saturation can be modelled with second-order accuracy in space and in time.
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